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Abstract. We present an analytic classical relativistic derivation for a general expression of the
harmonic power generated per unit laboratory solid angle due to Compton scattering of plane
wave, linearly polarized light of arbitrary intensity from free electrons moving initially with
arbitrary velocity. We show graphically the generated frequency as a function of the coordinates
of the observation point for several initial electron kinetic energies and light field intensities.

1. Introduction

It is well known that a free electron is not capable of absorbing or emitting a single photon
due to the energy-momentum conservation condition. However, emission and absorption
of two or more photons result, generally, in the recoil of the electron and the scattering of
light. We have recently studied [1–3] the classical relativistic electron dynamics, including
ponderomotive scattering and electron trajectories, in the presence of a plane wave, circularly
polarized laser field of arbitrary intensity from a free electron initially moving with an
arbitrary velocity. We have also made a systematic study of the related process of harmonic
generation [4, 5]. These issues are of current interest in connection with laser-assisted
fusion experiments [6], the design and operation of linear electron accelerators employing
powerful lasers [7] and related problems.

In a classic 1970 paper, Sarachik and Schappert [8] presented a derivation for thenth
harmonic power generated by scattering plane wave light from a single electron assumed
to be initially at rest at the origin. Their analysis of this restricted problem was carried
out in the reference frame in which the electron ison averageat rest, the result was then
Lorentz-transformed to the laboratory frame. The aim of this paper is to generalize the
work of Sarachik and Schappert [8, 9] to the case of an electron initially moving with an
arbitrary velocity. In this context, it should also be mentioned that the full QED problem
was formulated a long time ago by Brown and Kibble [10].

In this paper, we present a classical, fully relativistic, analytic solution to the problem of
harmonic production by scattering linearly polarized radiation from a free electron, again,
without making any restrictions on the laser field intensity or the electron initial velocity.
We carry out the whole analysis in the laboratory frame, thus eliminating all confusion and
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difficulties arising from the need to solve the problem in an oscillating frame (the average
at rest frame) and then transform the results to the laboratory. The linear polarization
case is more common, from a practical point of view, but yet is more involved from the
calculational viewpoint, than the circular polarization problem.

This paper is organized as follows. The problem will be formulated in the next section.
In section 3, we will present the full derivation of an expression for thenth harmonic power
generated by the scattering process. We give a brief discussion of our results in section 4
and a summary in section 5.

2. Background

The plane wave, linearly polarized radiation field, frequencyω0 and propagation vector
k = (ω0/c)k̂, will be modelled by the vector potential

A(η) = îa cosη (1)

wherea is a constant amplitude,η = ω0t−k ·r is the phase,t is the time,r is the position
vector of the electron, andc is the speed of light. The initial velocity vector, scaled by the
speed of light, will be given by

β0 = β0(î sinθ0+ k̂ cosθ0) (2)

whereθ0 is the angleβ0 makes withk. We further let the unit vector̂m = (m1, m2, m3) =
(sinθ cosφ, sinθ sinφ, cosθ) point in the direction of observation of the scattered radiation,
in a spherical polar coordinate system with origin at the point of intersection of the laser
beam and the initial electron direction of motion.

The starting point for a systematic derivation of the scattered power is the following
expression for the energy scattered per unit solid angle d� and per unit frequency dω, given
here in the far-field approximation [11]

d2E

d� dω
= (eω)2

4π2c3

∣∣∣∣ ∫ ∞−∞ m̂×
(
m̂× dr

dt

)
exp

{
iω

[
t − m̂ · r(t)

c

]}
dt

∣∣∣∣2. (3)

We therefore need an expression for the electron trajectory,r(t) or equivalentlyr(η). An
electron, of massme, initially moving at the arbitrary velocity given by equation (2) in the
presence of a plane wave radiation field follows a trajectory given by [4]

r(η) = r0+ c

ω0

∫ η

η0

[
γ0mecβ0+ e

c
A(η′)

γ0mec(1− k̂ · β0)

]
dη′

+k̂
(
c

ω0

)∫ η

η0

 1
2

(
eA(η′)
γ0mec2

)2
+
(
eA(η′)
γ0mec2

)
· β0

(1− k̂ · β0)
2

 dη′. (4)

In parametric form, the electron trajectory in the linearly polarized field modelled by
equation (1) may now be written down from equation (4) as:

x(η) = c

ω0
(a1η + b1 sinη) (5)

y(η) = 0 (6)

z(η) = c

ω0

(
a3η + b3 sinη + c3

2
sin 2η

)
. (7)
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In these equations,η plays the role of a convenient parameter, and

a1 = β0 sinθ0

1− β0 cosθ0
(8)

b1 = q/γ0

1− β0 cosθ0
(9)

a3 = β0 cosθ0

1− β0 cosθ0
+ (q/2γ0)

2

(1− β0 cosθ0)2
(10)

b3 = (q/γ0)β0 sinθ0

(1− β0 cosθ0)2
(11)

c3 = (q/2γ0)
2

(1− β0 cosθ0)2
. (12)

Moreover,q2 = (ea/mec
2)2 is a dimensionless intensity parameter, andγ0 = (1− β2

0)
−1/2.

Note that, in writing equations (5)–(7) from equation (4),η0 and r0 have been dropped,
the reason being that they enter into equation (3) for the scattered energy only through an
unimportant phase factor. Note also that the trajectory is confined to thexz-plane, the plane
containing the polarization vector andβ0 [3].

3. Harmonic generation

With the parametric equations at our disposal, we may now write equation (3) as:

d2E

d� dω
= (eω)2

4π2c3
{(1−m2

1)(Kx)
2− 2m1m2KxKz + (1−m2

3)(Kz)
2} (13)

where we have changed the integration variable fromt to η, and have taken

K =
∫ ∞
−∞

dr

dη
exp

{
i
ω

ω0

[
η + ω0

c
[z− m̂ · r(η)]

]}
dη. (14)

From equation (14), and after lengthy algebra, we obtain the following expressions:

Kx = πc

V

∞∑
n=−∞
{a1G

(n)

0 + b1G
(n)

1 }δ
(
ω − nω0

V

)
(15)

Kz = πc

V

∞∑
n=−∞
{a3G

(n)

0 + b3G
(n)

1 + c3G
(n)

2 }δ
(
ω − nω0

V

)
(16)

where

V = 1−m1a1− (m3− 1)a3 (17)

and

X = (1−m3)
c3

2

ω

ω0
(18)

Y = [m1b1+ (m3− 1)b3]
ω

ω0
(19)

and, yet (s = 0, 1, 2)

G(n)
s =

∞∑
`=−∞

J`(X)[Jn+2`+s(Y )+ Jn+2`−s(Y )]. (20)
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The algebra leading to equations (15) and (16) involves the following. First, the
trigonometric functions in dr/dt in equation (14) are expressed in exponential form.
Secondly, the generating function of the ordinary Bessel functions

eiu sinξ =
∞∑

n=−∞
Jn(u)e

inξ (21)

is then used in part of the integrand. Thirdly, the integrations overη are carried out
giving δ-functions. Finally, the dummy summation indices are changed such as to allow
for extraction of a commonδ-function.

We now simplify equations (15) and (16) further. To this end, we employ the well
known recurrence relations of the ordinary Bessel functions to derive the following identity

G
(n)

0 =
Y

n
G
(n)

1 −
2X

n
G
(n)

2 . (22)

Using equation (22), we eliminateG(n)

0 entirely from equations (15) and (16), which then
become

Kx = πc

V

∞∑
n=−∞

{(
a1
Y

n
+ b1

)
G
(n)

1 −
(

2a1
X

n

)
G
(n)

2

}
δ
(
ω − nω0

V

)
(23)

Kz = πc

V

∞∑
n=−∞

{(
a3
Y

n
+ b3

)
G
(n)

1 +
(
c3− 2a3

X

n

)
G
(n)

2

}
δ
(
ω − nω0

V

)
. (24)

We note at this point that, in view of the presence of theδ-function in equations (23)
and (24) above, it follows that the Compton radiation is emitted only at thenth harmonic
frequency:

ω = ω(n) = nω0

1−m1a1− (m3− 1)a3
. (25)

With the help of equation (25), the definitions given above forX and Y , for example,
become

X = n
[

(1−m3)

1−m1a1− (m3− 1)a3

]
c3

2
(26)

Y = n
[

m1b1+ (m3− 1)b3

1−m1a1− (m3− 1)a3

]
. (27)

Next, we transform the energy expression, equation (3), into an expression for the
scattered power. The latter is defined by:

P = lim
T→∞

E

T
(28)

whereT is a measure of time. To accomplish this, an integral representation for one of
theδ-functions resulting from substituting equations (23) and (24) into equation (3) is used,
whereby

δ(ω − ω′) = lim
T→∞

∫ T/2

−T/2
ei(ω−ω′)t dt

2π

= T

2π
only for ω = ω′. (29)

Using the remainingδ-function, we then integrate the expression obtained from
equation (3), after the operations implied by equations (28) and (29) have been carried out,
over all frequencies in order to get the power scattered per unit laboratory solid angle. The
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result is thetotal scattered power, wheretotal here means summed over all the harmonics
from n = 1 to∞; the terms corresponding to zero and negative values ofn are dropped
since frequencies can only be positive. We obtain the contribution to the total power from
the nth harmonic by simply dropping the summation sign. Hence,

dP (n)

d�
= (eω0)

2

8πc

n2

[1− a1 cosα + 2a3 sin2(θ/2)]4

×
{[

sin2 α

(
a1
Y

n
+ b1

)2

− 2 cosα cosθ

(
a1
Y

n
+ b1

)(
a3
Y

n
+ b3

)
+ sin2 θ

(
a3
Y

n
+ b3

)2 ]
(G

(n)

1 )2−
[

4 sin2 α

(
a1
Y

n
+ b1

)(
a1
X

n

)
+2 cosα cosθ

(
a1
Y

n
+ b1

)(
c3− 2a3

X

n

)
−4 cosα cosθ

(
a3
Y

n
+ b3

)(
a1
X

n

)
−2 sin2 θ

(
a3
Y

n
+ b3

)(
c3− 2a3

X

n

)]
G
(n)

1 G
(n)

2

+
[

4 sin2 α

(
a1
X

n

)2

+ 4 cosα cosθ

(
a1
X

n

)(
c3− 2a3

X

n

)
+ sin2 θ

(
c3− 2a3

X

n

)2 ]
(G

(n)

2 )2
}

(30)

whereα is the angle between̂m and thex-axis, i.e. cosα = sinθ cosφ. Equation (30),
or equivalently equation (37) below, is the centrepiece of this paper. We now consider the
limit of equation (30) asβ0→ 0. In this limit, equations (8)–(12) yield

a1 = b3 = 0 b1 = q and a3 = c3 = q2

4
. (31)

Using this set of values for the coefficients in equations (17), (26) and (27), we obtain

V = 1+ 1
2q

2 sin2(θ/2) X = 1

4
nq2 sin2(θ/2)

1+ 1
2q

2 sin2(θ/2)

Y = nq cosα

1+ 1
2q

2 sin2(θ/2)
.

(32)

Using equations (31) and (32), we can easily show thatG(n)
s → Fns and that equation (30)

reduces identically to

dP (n)

d�
= (eω0q)

2

8πc

n2

[1+ 1
2q

2 sin2(θ/2)]4

{(
1− (1+ 1

2q
2) cos2 α

[1+ 1
2q

2 sin2(θ/2)]2

)
(F n1 )

2

−1

2
q

cosα[cosθ − 1
2q

2 sin2(θ/2)]

[1+ 1
2q

2 sin2(θ/2)]2
Fn1F

n
2

+ 1

16
q2 sin2 θ

[1+ 1
2q

2 sin2(θ/2)]2
(F n2 )

2

}
(33)

where

Fns =
∞∑

`=−∞
J`

(
1

4
nq2 sin2(θ/2)

1+ 1
2q

2 sin2(θ/2)

)
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×
{
J2`+n+s

(
nq cosα

1+ 1
2q

2 sin2(θ/2)

)
+ J2`+n−s

(
nq cosα

1+ 1
2q

2 sin2(θ/2)

)}
(34)

and wheres is an integer equal to 1 or 2. This limited result was obtained by Sarachik and
Schappert [8] many years ago for thenth harmonic power scattered into a unit laboratory
solid angle by an electron initially at rest at the origin. Our analysis demonstrates that the
average at rest frame employed in [8], in the case of an electron initially at rest, is justified.

We close by noting that equation (30), may be easily converted into an expression, for
the harmonic power, in terms of the generalized Bessel functionsJ (u, v). The generalized
Bessel functions have always been associated with problems involving high-intensity linearly
polarized light [12, 13]. It suffices, for our purposes in this work, to just recall the series
representation of such functions in terms of the ordinary Bessel functions, namely

Jp(u, v) =
∞∑

k=−∞
Jk(v)Jp−2k(u)

=
∞∑

k=−∞
(−1)kJk(v)Jp+2k(u)

=
∞∑

k=−∞
Jk(−v)Jp+2k(u). (35)

In the second line of equation (35), we have letk → −k, and in the third the parity
property of the ordinary Bessel functions has been employed. Using equation (35), we
obtain equation (20) in the form

G(n)
s = Jn+s(Y,−X)+ Jn−s(Y,−X). (36)

In this context, equation (22) becomes one of the well known recurrence relations of the
generalized Bessel functions [13]. Hence, in place of equation (30) we would have

dP (n)

d�
= (eω0)

2

8πc

n2

[1− a1 cosα + 2a3 sin2(θ/2)]4

×{sin2 α(S
(n)

1 )2− 2 cosα sinθ(S(n)1 S
(n)

2 )+ sin2 θ(S
(n)

2 )2} (37)

where

S
(n)

1 =
(
a1
Y

n
+ b1

)
G
(n)

1 −
(

2a1
X

n

)
G
(n)

2 (38)

S
(n)

2 =
(
a3
Y

n
+ b3

)
G
(n)

1 +
(
c3− 2a3

X

n

)
G
(n)

2 . (39)

The set of equations (36)–(39) is equivalent to equations (20) and (30).

4. Discussion

Equation (25) gives the generated Compton frequencies that would be observed at the
angular position (θ, φ). In figures 1 and 2, we plot the quantityω

nω0
against the angular

coordinates of the observation point. In both figures, the initial electron motion is in
the direction corresponding toθ0 = π/6 and φ0 = 0, i.e. in the plane containing the
field polarization and propagation directions. In figure 1, the laser field intensity is about
1018 W cm−2 (q ≈ 1) and the electron’s initial speed is such that: (a) γ0 = 10 corresponding
to a nearly 4.5 MeV electron, and (b) γ0 = 100 or a≈ 50 MeV electron. Note, first of all,
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Figure 1. The quantityω/nω0 (vertical axis) is shown here versus the angular coordinatesθ and
φ (both in degrees) of the observation point. The incident radiation has intensity≈ 1018 W cm−2

(q = 1), and the electron initially moves in the plane containing the laser field propagation and
polarization directions (θ0 = π/6 with k). The initial electron energy is approximately: (a)
4.5 MeV (γ0 = 10), and (b) 50 MeV (γ0 = 100).

that the generated frequencies are confined to a narrow cone around the direction of initial
electron motion, as expected, and that the cone becomes narrower with increasing electron
initial speed. Secondly, the magnitude of the generated frequency increases with increasing
initial electron speed.

In figure 2, we plot the same quantity, but for: (a) q = 10, γ0 = 100, and (b)
q = 100, γ0 = 100. In this figure, the effect on the generated frequency of increasing the
laser field intensity is shown. Asq increases by one order of magnitude (corresponding to
a two-order-of-magnitude increase in the intensity) from (a) to (b) the maximum frequency
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Figure 2. The same as figure 1, but forγ0 = 100, and: (a) q = 10, and (b) q = 100.

generated decreases while, at the same time, lower frequencies show up far away from the
initial electron direction of motion, i.e. scattered radiation is no longer confined to a narrow
cone about the electron’s initial direction of motion.

5. Summary

In conclusion, we have considered the (Compton) scattering of linearly polarized light off
relativistic electrons. The situation we chose to study is general in the sense of involving
arbitrary initial electron energy and momentum and arbitrary laser intensity. The angular
distribution in the laboratory of the power emitted per unit solid angle into the Compton
harmonic of ordern has been found exactly analytically. Two equivalent expressions for this
quantity have been obtained, one, equation (30), in terms of the ordinary Bessel functions,
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the other, equation (37), involving the generalized Bessel functions. The expression derived
many years ago for the restricted problem of an electron initially at rest at the origin has
been shown to follow exactly from our main result in the appropriate limit,β0→ 0. By so
doing, we have rigorously demonstrated that the average at rest frame employed by Sarachik
and Schappert in this case is justified.
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